International Journal of Mathematical Archive-3(4), 2012, Page: 1423-1428

(cas sMA Available online through www.ijma.info ISSN 2229-5046

THE UPPER EDGE-TO-VERTEX GEODETIC NUMBER OF A GRAPH

J. John
Department of Mathematics, Government College of Engineering, Tirunelveli - 627007, India
E-mail: johnramesh1971@yahoo.co.in

A. Vijayan ${ }^{1}$ \& S. Sujitha ${ }^{2 *}$

Department of Mathematics, N. M. Christian College, Marthandam- 629165, India
E-mail: vijayan2020@yahoo.co.in, sujivenki@rediffmail.com
(Received on: 20-03-12; Accepted on: 05-04-12)

Abstract

Let G be a non-trivial connected graph with at least three vertices. For subsets A and B of $V(G)$, the distance $d(A, B)$ is defined as $d(A, B)=\min \{d(x, y): x \in A, y \in B\}$. $A u-v$ path of length $d(A, B)$ is called an $A-B$ geodesic joining the sets $A, B \subseteq V(G)$, where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A-B$ geodesic if x is a vertex of an $A-B$ geodesic. A set $S \subseteq E$ is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is $g_{e v}(G)$. Any edge-to-vertex geodetic set of cardinality $g_{\text {ev }}(G)$ is called an edge-to-vertex geodetic basis of G. An edge-to-vertex geodetic set S in a connected graph G is called a minimal edge-to-vertex geodetic set if no proper subset of S is an edge-to-vertex geodetic set of G. The upper edge-to-vertex geodetic number $g_{e v}{ }^{+}(G)$ of G is the maximum cardinality of a minimal edge-to-vertex geodetic set of G. Some general properties satisfied by this concept are studied. For a connected graph G of size q with upper edge-to-vertex geodetic number q or $q-1$ are characterized. It is shown that for every two positive integers a and b, where $2 \leq a \leq b$, there exists a connected graph G with $g_{e v}(G)=a$ and $g_{e v}{ }^{+}(G)$ $=b$.

Keywords: distance, geodesic, edge-to-vertex geodetic basis, edge-to-vertex geodetic number, upper edge-to-vertex geodetic number.

AMS Subject Classification: 05C12.

1. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to $[1,5]$. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. For subsets A and B of $V(G)$, the distance $d(A, B)$ is defined as $d(A, B)=\min \{d(x, y): x \in A, y \in B\}$. An $u-v$ path of length $d(A, B)$ is called an $A-B$ geodesic joining the sets A, B, where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A-B$ geodesic if x is a vertex of an $A-B$ geodesic. For $A=\{u, v\}$ and $B=\{z, w\}$ with $u v$ and $z w$ edges, we write an $A-B$ geodesic as $u v-z w$ geodesic and $d(A, B)$ as $d(u v, z w)$. A set $S \subseteq E$ is called an edge-to-vertex geodetic set if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number $g_{e v}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{e v}(G)$ is called an edge-to-vertex geodetic basis of G or a $g_{e v}(G)$-set of G. The geodetic number of a graph was studied in $[1,2,3]$. The edge-to-vertex geodetic number of a graph was introduced and studied by Santhakumaran and John in [6] and further studied in [7]. The upper geodetic number of a graph was introduced and studied in [4]. For a nonempty set X of edges, the subgraph $\langle X\rangle$ induced by X has edge set X and consists of all vertices that are incident with at least one edge in X. This subgraph is called an edge-induced subgraph of G. For a cut vertex v in a connected graph G and a component H of G-v, the subgraph H and the vertex v together with all edges joining v and $V(H)$ is called a branch of G at v. A double star is a tree with diameter three. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. An edge of a connected graph G is called an extreme edge of G if one of its ends is an extreme vertex of G.

[^0]Consider the graph G given in Figure 1.1 with $A=\left\{v_{4}, v_{5}\right\}$ and $B=\left\{v_{1}, v_{2}, v_{7}\right\}$, the paths $P: v_{5}, v_{6}, v_{7}$ and $Q: v_{4}, v_{3}, v_{2}$ are the only two $A-B$ geodesics so that $d(A, B)=2$. For the graph G given in Figure 1.2, the three $v_{1} v_{6}-v_{3} v_{4}$ geodesics are $P: v_{1}, v_{2}, v_{3} ; Q: v_{1}, v_{2}, v_{4}$; and $R: v_{6}, v_{5}, v_{4}$ with each of length 2 so that $d\left(v_{1} v_{6}, v_{3} v_{4}\right)=2$. Since the vertices v_{2} and v_{5} lie on the $v_{1} v_{6}-v_{3} v_{4}$ geodesics P and R respectively, $S=\left\{v_{1} v_{6}, v_{3} v_{4}\right\}$ is an edge-to-vertex geodetic basis of G so that $g_{e v}(G)$ $=2$.

Figure: 1.1

Figure: 1.2

In section 2 we give some general properties and obtain the upper edge-to-vertex geodetic number of some family of graphs. In section 3 we give some general results and sharp bounds for the upper edge-to-vertex geodetic number. In section 4 we present realization result on the edge-to-vertex geodetic number and upper edge-to-vertex geodetic number of a graph. The following theorems are used in sequel.

Theorem 1.1: [6] If v is an extreme vertex of a connected graph G, then every edge-to-vertex geodetic set contains at least one extreme edge that is incident with v.

Theorem 1.2: [6] Let G be a connected graph and S be a $g_{e v}$-set of G. Then no cut edge of G which is not an end-edge of G belongs to S.

Theorem 1.3: [7] For any connected graph G of size $q \geq 2, g_{e v}(G)=q$ if and only if G is a star.
Theorem 1.4: [7] For any connected graph G of size $q \geq 4, g_{e v}(G)=q-1$ if and only if G is a double star.
Throughout the following G denotes a connected graph with at least three vertices.

2. THE UPPER EDGE-TO-VERTEX GEODETIC NUMBER OF A GRAPH

In this section we look closely at the concept of the upper edge-to-vertex geodetic number of a graph and obtain the upper edge-to-vertex geodetic number of some family of graphs.

Definition 2.1: An edge-to-vertex geodetic set S in a connected graph G is called a minimal edge-to-vertex geodetic set if no proper subset of S is an edge-to-vertex geodetic set of G. The upper edge-to-vertex geodetic number $g_{e v}{ }^{+}(G)$ of G is the maximum cardinality of a minimal edge-to-vertex geodetic set of G.

Example 2.2: For the graph G given in Figure 2.1, $S=\left\{v_{1} v_{2}, v_{4} v_{5}\right\}$ is an edge-to-vertex geodetic basis of G so that $g_{e v}$ $(G)=2$. The set $S_{1}=\left\{v_{1} v_{2}, v_{3} v_{4}, v_{5} v_{6}\right\}$ is an edge-to-vertex geodetic set of G and it is clear that no proper subset of S_{1} is an edge-to-vertex geodetic set of G and so S_{1} is a minimal edge-to-vertex geodetic set of G. Also it is easily verified that no four element or five element subset of edge set is a minimal edge-to-vertex geodetic set of G, it follows that $g_{e v}{ }^{+}(G)=3$.

G
Figure: 2.1

Remark 2.3: Every minimum edge-to-vertex geodetic set of G is a minimal edge-to-vertex geodetic set of G and the converse is not true. For the graph G given in Figure 2.1, $S_{1}=\left\{v_{1} v_{2}, v_{3} v_{4}, v_{5} v_{6}\right\}$ is a minimal edge-to-vertex geodetic set but not a minimum edge-to-vertex geodetic set of G.

Theorem 2.4: Let G be a connected graph with cut-vertices and S an edge-to-vertex geodetic set of G. Then every branch of G contains an element of S.

Proof: Assume that there is a branch B of G at a cut-vertex v such that B contains no element of S. Then by Theorem $1.1, B$ does not contain any end-edge of G. Hence it follows that no vertex of B is an end vertex of G. Let u be any vertex of B such that $u \neq v$ (such a vertex exists since $|V(B)| \geq 2$). Then u is not incident with any edge of S and so u lies on a $e-f$ geodesic $P: u_{1}, u_{2}, \ldots, u, \ldots, u_{t}$, where u_{1} is an end of e and u_{t} is an end of f with $e, f \in S$. Since v is a cutvertex of G, the $u_{1}-u$ and $u-u_{t}$ subpaths of P both contain v and so P is not a path, which is a contradiction. Hence every branch of G contains an element of S.

Corollary 2.5: Let G be a connected graph with cut-edges and S an edge-to-vertex geodetic set of G. Then for any cutedge e of G, which is not an end-edge, each of the two components of $G-e$ contains an element of S.

Proof: Let $e=u v$. Let G_{1} and G_{2} be the two components of $G-e$ such that $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Since u and v are cut-vertices of G, it follows that G_{1} contains at least one branch at u and G_{2} contains at least one branch at v. Hence it follows from Theorem 2.4 that each of G_{1} and G_{2} contains an element of S.

Theorem 2.6: Let G be a connected graph and S be a minimal edge - to -vertex geodetic set of G. Then no cut edge of G which is not an end-edge of G belongs to S.

Proof: Let S be any minimal edge-to-vertex geodetic set of G. Suppose that $e=u v$ be a cut edge of G which is not an end-edge of G such that $e \in S$. Let G_{1} and G_{2} be the two components of $G-e$. Let $S^{\prime}=S-\{u v\}$. We claim that S^{\prime} is an edge-to-vertex geodetic set of G. By Corollary $2.5, G_{1}$ contains an edge $x y$ and G_{2} contains an edge $x^{\prime} y^{\prime}$, where $x y, x$ $' y$ ' $\in S$. Let z be any vertex of G. Assume without loss of generality that z belongs to G_{1}. Since $u v$ is a cut edge of G, every path (in particular every geodesic) joining a vertex of G_{1} with a vertex of G_{2} contains the edge $u v$. Suppose that z is incident with $u v$ or the edge $x y$ of S or that lies on a geodesic joining $x y$ and $u v$. If z is incident with $u v$, then $z=u$. Let $P: y, y_{1}, y_{2}, \ldots, z=u$ be a $x y-u$ geodesic. Let $Q: v, v_{1}, v_{2}, \ldots, y^{\prime}$ be a $v-x^{\prime} y^{\prime}$ geodesic. Then, it is clear that $P \cup\{u v\}$ $\cup Q$ is a $x y-x^{\prime} y^{\prime}$ geodesic. Thus z lies on the $x y-x^{\prime} y^{\prime}$ geodesic. If z is incident with $x y$, then there is nothing to prove. If z lies on a $x y-u v$ geodesic say $y, y_{1}, y_{2}, \ldots, z, \ldots, u$, then let $v, v_{1}, v_{2}, \ldots, y^{\prime}$ be $v-x^{\prime} y^{\prime}$ geodesic. Then clearly $y, y_{1}, y_{2}, \ldots, z, \ldots, u, v, v_{1}, v_{2}, \ldots, y^{\prime}$ is a $x y-x^{\prime} y^{\prime}$ geodesic. Thus z lies on a geodesic joining a pair of edges of S^{\prime}. Thus we have proved that a vertex that is incident with $u v$ or an edge of S or that lies on a geodesic joining $x y$ and $u v$ of S also is incident with an edge of S^{\prime} or lies on a geodesic joining a pair of edges of S^{\prime}. Hence it follows that S^{\prime} is an edge-to-vertex geodetic set such that $S^{\prime} \subset S$, which is a contradiction to S is a minimal edge-to-vertex geodetic set of G. Hence the theorem follows.

In the following we determine the upper edge-to-vertex geodetic number of some standard graphs.
Theorem 2.7: For any non-trivial tree T with k end-edges, $g_{e v}{ }^{+}(T)=k$.
Proof: By Theorem 1.1, any edge-to-vertex geodetic set contains all the end-edges of T. By Theorem 2.6, no cut-edge of T belongs to any minimal edge-to-vertex geodetic set of G. Hence it follows that the set of all end-edges of T is the unique minimal edge-to-vertex geodetic set of T so that $g_{e v}{ }^{+}(T)=k$. Thus the proof is complete.

Theorem 2.8: For a complete graph $G=K_{p}(p \geq 4), g_{e v}{ }^{+}(G)=p-1$.
Proof: Let S be any set of $p-1$ adjacent edges of K_{p} incident at a vertex,say v. Since each vertex of K_{p} is incident with an edge of S, it follows that S is an edge-to-vertex geodetic set of G. If S is not a minimal edge-to-vertex geodetic set of G, then there exists a proper subset S^{\prime} of S such that S^{\prime} an edge-to-vertex geodetic set of G. Therefore there exists at least one vertex, say u of K_{p} such that u is not incident with any edge of S^{\prime}. Hence u is neither incident with any edge of S^{\prime} nor lies on a geodesic joining a pair of edges of S^{\prime} and so S^{\prime} is not an edge-to-vertex geodetic set of G, which is a contradiction. Hence S is a minimal edge-to-vertex geodetic set of G. Therefore $g_{e v}{ }^{+}(G) \geq p-1$. Suppose that there exists a minimal edge-to-vertex geodetic set M such that $|M| \geq p$. Since M contains at least p edges, $<M>$ contains at least one cycle. Let $M^{\prime}=M-\{e\}$, where e is an edge of a cycle which lies in $\langle M\rangle$. It is clear that M^{\prime} is an edge-tovertex geodetic set with $M^{\prime} \subset \underset{\neq}{\subset}$, which is a contradiction. Therefore, $g_{e v}{ }^{+}(G)=p-1$.

Theorem 2.9: For the complete bipartite graph $G=K_{m, n}(2 \leq m \leq n), g_{e v}{ }^{+}(G)=n+m-2$.
Proof: Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a bipartition of G. Let $S_{i}=\left\{x_{i} y_{1}, x_{i} y_{2}, \ldots, x_{i} y_{n-1}, x_{1} y_{n}, x_{2} y_{n}, \ldots, x_{i-}\right.$ $\left.{ }_{1} y_{n}, x_{i+1} y_{n}, \ldots, x_{m} y_{n}\right\}(1 \leq i \leq m), M_{j}=\left\{x_{1} y_{j}, x_{2} y_{j}, \ldots, x_{m-1} y_{j}, x_{m} y_{1}, x_{m} y_{2}, \ldots, x_{m} y_{j-1}, x_{m} y_{j+1}, \ldots, x_{m} y_{n}\right\}(1 \leq j \leq n)$ and $N_{k}=\left\{x_{1} y_{1}\right.$, $\left.x_{2} y_{2}, \ldots, x_{m-1} y_{m-1}, x_{m} y_{m}, x_{m} y_{m+1}, \ldots, x_{m} y_{n}\right\}$ with $\left|S_{i}\right|=\left|M_{j}\right|=n+m-2$ and $\left|N_{k}\right|=n$. It is easily verified that any minimal edge-to-vertex geodetic set of G is of the form either S_{i} or M_{j} or N_{k}. Since no proper subset of $S_{i}(1 \leq i \leq m)$, $M_{j}(1 \leq j \leq n)$ and N_{k} is an edge-to-vertex geodetic set of G, it follows that, $g_{e v}{ }^{+}(G)=n+m-2$.

3. THE EDGE-TO-VERTEX GEODETIC NUMBER AND UPPER EDGE-TO-VERTEX GEODETIC NUMBER OF A GRAPH

In this section, connected graphs G of size q with upper edge-to-vertex geodetic number q or $q-1$ are characterized.
Theorem 3.1: For a connected graph $G, 2 \leq g_{e v}(G) \leq g_{e v}{ }^{+}(G) \leq q$.
Proof: Any edge-to-vertex geodetic set needs at least two edges and so $g_{e v}(G) \geq 2$. Since every minimal edge-to-vertex geodetic set is an edge-to-vertex geodetic set, $g_{e \nu}(G) \leq g_{e v}{ }^{+}(G)$. Also, since $E(G)$ is an edge-to-vertex geodetic set of G, it is clear that $g_{e v}{ }^{+}(G) \leq q$. Thus $2 \leq g_{e v}(G) \leq g_{e v}{ }^{+}(G) \leq q$.

Remark 3.2: The bounds in Theorem 3.1 are sharp. For any non-trivial path $P, g_{e v}(P)=2$. For any tree $T, g_{e v}(T)=$ $g_{e v}{ }^{+}(T)$ and $g_{e v}{ }^{+}\left(K_{1, q}\right)=q$ for $q \geq 2$. Also, all the inequalities in the theorem are strict. For the complete graph $G=K_{5}$, $g_{e v}(G)=3, g_{e v}{ }^{+}(G)=4$ and $q=10$ so that $2<g_{e v}(G)<g_{e v}{ }^{+}(G)<q$.

Theorem 3.3: For a connected graph $G, g_{e v}(G)=q$ if and only if $g_{e v}{ }^{+}(G)=q$.
Proof: Let $g_{e v}{ }^{+}(G)=q$. Then $S=E(G)$ is the unique minimal edge-to-vertex geodetic set of G. Since no proper subset of S is an edge-to-vertex geodetic set, it is clear that S is the unique minimum edge-to-vertex geodetic set of G and so $g_{e v}(G)=q$. The converse follows from Theorem 3.1.

As a consequence of this result, we have the following corollary.
Corollary 3.4: For a connected graph G of size q, the following are equivalent:
(i) $g_{e v}(G)=q$
(ii) $g_{e v}{ }^{+}(G)=q$
(iii) $G=K_{1, q}$

Proof: This follows from Theorems 1.3 and 3.3.
Theorem 3.5: Let G be a connected $g r a p h$ of size $q \geq 4$ which is not a star and has no cut edge. Then $g_{e v}{ }^{+}(G) \leq q-2$.
Proof: Suppose that $g_{e v}{ }^{+}(G) \geq q-1$. Then by Corollary $3.4, g_{e v}{ }^{+}(G)=q-1$. Let e be an edge of G which is not an end edge of G and let $M=E(G)-\{e\}$ be a minimal edge-to-vertex geodetic set of G. Since e is not a cut edge of $G,<E(G)-$ $e>$ is connected. Let f be an edge of $\langle E(G)-e>$ which is independent of e and also which is not an end edge of G. Then $M_{1}=M-\{f\}$ is an edge-to-vertex geodetic set of G. Since $M_{1} \subset M, M$ is not a minimal edge-to-vertex geodetic set of G, which is a contradiction. Therefore $g_{e v}{ }^{+}(G) \leq q-2$.

Remark 3.6: The bound in Theorem 3.5 is sharp. For the graph G given in Figure 3.1, $S_{1}=\left\{v_{1} v_{2}, v_{4} v_{5}\right\}, S_{2}=\left\{v_{1} v_{2}, v_{3} v_{4}\right.$, $\left.v_{3} v_{5}\right\}, S_{3}=\left\{v_{1} v_{3}, v_{2} v_{3}, v_{4} v_{5}\right\}$ and $S_{4}=\left\{v_{1} v_{3}, v_{2} v_{3}, v_{3} v_{4}, v_{3} v_{5}\right\}$ are the only four minimal edge-to-vertex geodetic set of G so that $g_{e v}{ }^{+}(G)=4=q-2$.

Figure: 3.1

Theorem 3.7: For a connected $g r a p h ~ G$ of size $q \geq 4, g_{e v}(G)=q-1$ if and only if $g_{e v}{ }^{+}(G)=q-1$.
Proof: Let $g_{e v}(G)=q-1$. Then it follows from Theorem 3.1 that $g_{e v}{ }^{+}(G)=q$ or $q-1$. If $g_{e v}{ }^{+}(G)=q$, then by Theorem 3.3, $g_{e v}(G)=q$, which is a contradiction. Hence $g_{e v}{ }^{+}(G)=q-1$. Conversely, let $g_{e v}{ }^{+}(G)=q-1$, then it follows from Corollary 3.4 that G is not a star. Hence by Theorem 3.5, G contains a cut edge, say e. Since $g_{e v}{ }^{+}(G)=q-1$, hence it follows from Theorem 2.4 that $M=E(G)-\{e\}$ is the unique minimal edge-to-vertex geodetic set of G. We claim that $g_{\text {ev }}(G)=q-1$. Suppose that $g_{\text {ev }}(G)<q-1$.Then there exists a minimum edge-to-vertex geodetic set M_{1} such that
$\left|M_{1}\right|<q-1$. By Theorem 1.2, $e \notin M_{1}$. Then it follows that $M_{1} \subset M$, which is a contradiction. Therefore $g_{e v}(G)=q-1$.
Corollary 3.8: For a connected graph G of $\operatorname{size} q \geq 4$, the following are equivalent:
(i) $g_{e v}(G)=q-1$
(ii) $g_{e v}{ }^{+}(G)=q-1$
(iii) G is a double star.

Proof: This follows from Theorems 1.4 and 3.7.

4. REALIZATION RESULT

In view of Theorem 3.1, we have the following realization result.
Theorem 4.1: For every two positive integers a and b, where $2 \leq a \leq b$, there exists a connected graph G with $g_{e v}(G)=$ a and $g_{e v}{ }^{+}(G)=b$.

Proof: If $a=b$, let $G=K_{1}, a$. Then by Corollary 3.4, $g_{e v}(G)=g_{e v}{ }^{+}(G)=a$. So, let $2 \leq a<b$. Let $P: x, y$ be a path on two vertices. Let G be the graph in Figure 4.1 obtained from P by adding new vertices $z, v_{1}, v_{2}, \ldots, v_{b-a+1}, u_{1}, u_{2}, \ldots, u_{a-1}$ and joining each vertex $u_{i}(1 \leq i \leq a-1)$ and each vertex $v_{i}(1 \leq i \leq b-a+1)$ with z, each vertex $v_{i}(2 \leq i \leq b-a+1)$ with x and v_{1} with y. Let $S=\left\{z u_{1}, z u_{2}, \ldots, z u_{a-1}\right\}$ be the set of end edges of G. By Theorem 1.1, S is contained in every edge-to-vertex geodetic set of G. It is clear that S is not an edge-to-vertex geodetic set of G and so $g_{e v}(G) \geq a$. However $S^{\prime}=S \cup\{x y\}$ is an edge-to-vertex geodetic set of G so that $g_{e v}(G)=a$.

Now, $T=S \cup\left\{y v_{1}, x v_{2}, \ldots, x v_{b-a+1}\right\}$ is an edge-to-vertex geodetic set of G. We show that T is a minimal edge-to-vertex geodetic set of G. Let W be any proper subset of T. Then there exists at least one edge say $e \in T$ such that $e \notin W$. First assume that $e=z u_{i}$ for some $i(1 \leq i \leq a-1)$. Then the vertex u_{i} is neither incident with an edge of W nor lies on any geodesic joining a pair of edges of W and so W is not an edge-to-vertex geodetic set of G. Now, assume that $e=x v_{j}$ for some $j(2 \leq j \leq b-a+1)$. Then the vertex v_{j} is neither incident with an edge of W nor lies on a geodesic joining any pair of edges of W and so W is not an edge-to-vertex geodetic set of G. Next, assume that $e=y v_{1}$. Then the vertex v_{1} is neither incident with an edge of W nor lies on a geodesic joining any pair of edges of W and so W is not an edge-tovertex geodetic set of G. Hence T is a minimal edge-to-vertex geodetic set of G so that $g_{e v}{ }^{+}(G) \geq b$. Now, we show that there is no minimal edge-to-vertex geodetic set X of G with $|X| \geq b+1$. Suppose that there exists a minimal edge-tovertex geodetic set X of G such that $|X| \geq b+1$. Then by Theorem 1.1, $S \subseteq X$. Since S^{\prime} is an edge-to-vertex geodetic set of G, it follows that $x y \notin X$. Let $M_{1}=\left\{y v_{1}, x v_{2}, x v_{3} \ldots, x v_{b-a+1}\right\}$ and $M_{2}=\left\{z v_{1}, z v_{2}, z v_{3} \ldots, z v_{b-a+1}\right\}$. Let $X=S \cup S_{1} \cup S_{2}$, where $S_{1} \subseteq M_{1}$ and $S_{2} \subseteq M_{2}$. First we show that $S_{1} \subseteq M_{1}$ and $S_{2} \subseteq M_{\neq}$. Suppose that $S_{1}=M_{1}$. Then $T \subseteq X$ and so X is not a minimal edge-to-vertex geodetic set of G, which is a contradiction. Suppose that $S_{2}=M_{2}$. If $y v_{1} \notin X$, then y is neither incident with an edge of X nor lies on a geodesic joining any pair of edges of X and so X is not an edge-to-vertex geodetic set of G, which is a contradiction. If $y v_{1} \in X$ and if $x v_{i}$ do not belong to S_{1} for all $\mathrm{i}(2 \leq i \leq b-a+1)$, then x is neither incident with an edge of X nor lies on a geodesic joining any pair of edges of X and so X is not an edge-tovertex geodetic set of G, which is a contradiction. Therefore $x v_{i}$ belong to S_{1} for some $i(2 \leq i \leq b-a+1)$. Without loss of generality let us assume that $x v_{2} \in S_{1}$. Then $X^{\prime}=X-\left\{z v_{2}\right\}$ is an edge-to-vertex geodetic set of G with $X^{\prime} \subset X$, which is a contradiction. Therefore, $S_{1} \subset M_{1}$ and $S_{2} \subset M_{2}$. Next we show that $\left.V\left(<S_{1}\right\rangle\right) \cap V\left(<S_{2}>\right)$ contains no $v_{i}(1 \leq i \leq b$ $-a+1)$. Suppose that $V\left(<S_{1}\right) \cap V\left(<S_{2}\right)$ contains v_{i} for some $i(1 \leq i \leq b-a+1)$. Without loss of generality let us assume that $v_{2} \in V\left(<S_{1}>\right) \cap V\left(<S_{2}>\right)$. Then $X^{\prime} '^{\prime}=X-\left\{z v_{2}\right\}$ is an edge-to-vertex geodetic set of G with $X^{\prime}{ }_{\neq} \subset X$, which is a contradiction. Therefore $\left|S_{1} \cup S_{2}\right|=b-a+1$. Hence it follows that $|X|=a-1+b-a+1=b$, which is a contradiction to $|X| \geq b+1$.

Therefore $g_{e v}{ }^{+}(G)=b$.

J. John, A. Vijayan ${ }^{1}$ and S. Sujitha ${ }^{2 *}$ / The Upper Edge-to-Vertex Geodetic Number of a Graph/ IJMA- 3(4), April-2012,

 Page: 1423-1428

Figure: 4.1

REFERENCES

[1] F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
[2] F. Buckley, F. Harary and L.V. Quintas, Extremal results on the Geodetic Number of a graph, Scientia A2 (1988) 17-22.
[3] G. Chartrand, F. Harary and P. Zhang, Geodetic sets in Graphs, Discussiones Mathematicae Graph Theory 20(2000)129-138.
[4] G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a Graph, Networks Vol. 39(1), (2002) 1 - 6.
[5] F. Harary, Graph Theory, Addision-Wesley (1969).
[6] A.P. Santhakumaran and J. John, The Edge-to-Vertex Geodetic Number of a Graph, Serdica Journal of Mathematics (In press).
[7] A.P. Santhakumaran and J. John, On the Edge-to-Vertex Geodetic Number of a Graph, Miskolc Mathematical Notes (In press).

[^0]: *Corresponding author: S. Sujitha ${ }^{2 *}$, E-mail: sujivenki@rediffmail.com

