International Journal of Mathematical Archive-3(4), 2012, Page: 1423-1428 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

THE UPPER EDGE-TO-VERTEX GEODETIC NUMBER OF A GRAPH

J. John

Department of Mathematics, Government College of Engineering, Tirunelveli - 627007, India E-mail: johnramesh1971@yahoo.co.in

A. Vijayan¹ & S. Sujitha^{2*}

Department of Mathematics, N. M. Christian College, Marthandam- 629165, India E-mail: vijayan2020@yahoo.co.in, sujivenki@rediffmail.com

(Received on: 20-03-12; Accepted on: 05-04-12)

ABSTRACT

Let G be a non-trivial connected graph with at least three vertices. For subsets A and B of V(G), the distance d(A, B) is defined as $d(A, B) = \min\{d(x, y) : x \in A, y \in B\}$. A u - v path of length d(A, B) is called an A - B geodesic joining the sets A, $B \subseteq V(G)$, where $u \in A$ and $v \in B$. A vertex x is said to lie on an A - B geodesic if x is a vertex of an A - B geodesic. A set $S \subseteq E$ is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is $g_{ev}(G)$. Any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is called an edge-to-vertex geodetic basis of G. An edge-to-vertex geodetic set S in a connected graph G is called a minimal edge-to-vertex geodetic set if no proper subset of S is an edge-to-vertex geodetic set of G. The upper edge-to-vertex geodetic number $g_{ev}^+(G)$ of G is the maximum cardinality of a minimal edge-to-vertex geodetic set of G. Some general properties satisfied by this concept are studied. For a connected graph G of size q with upper edge-to-vertex geodetic number q or q - 1 are characterized. It is shown that for every two positive integers a and b, where $2 \le a \le b$, there exists a connected graph G with $g_{ev}(G) = a$ and $g_{ev}^+(G) = b$.

Keywords: distance, geodesic, edge-to-vertex geodetic basis, edge-to-vertex geodetic number, upper edge-to-vertex geodetic number.

AMS Subject Classification: 05C12.

1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1, 5]. For vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest u - v path in G. An u - v path of length d(u, v) is called an u - v geodesic. For subsets A and B of V(G), the distance d(A, B) is defined as $d(A, B) = min\{d(x, y) : x \in A, y \in B\}$. An u - v path of length d(A, B) is called an A - B geodesic joining the sets A, B, where $u \in A$ and $v \in B$. A vertex x is said to lie on an A - B geodesic if x is a vertex of an A - B geodesic. For $A = \{u, v\}$ and $B = \{z, w\}$ with uv and zw edges, we write an A - B geodesic as uv - zwgeodesic and d(A, B) as d(uv, zw). A set $S \subset E$ is called an *edge-to-vertex geodetic set* if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number $g_{ev}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is called an *edge-to-vertex geodetic basis* of G or a $g_{ev}(G)$ -set of G. The geodetic number of a graph was studied in [1, 2, 3]. The edge-to-vertex geodetic number of a graph was introduced and studied by Santhakumaran and John in [6] and further studied in [7]. The upper geodetic number of a graph was introduced and studied in [4]. For a nonempty set X of edges, the subgraph $\langle X \rangle$ induced by X has edge set X and consists of all vertices that are incident with at least one edge in X. This subgraph is called an *edge-induced subgraph* of G. For a cut vertex v in a connected graph G and a component H of G-v, the subgraph H and the vertex v together with all edges joining v and V (H) is called a branch of G at v. A double star is a tree with diameter three. A vertex v is an *extreme vertex* of a graph G if the subgraph induced by its neighbors is complete. An edge of a connected graph G is called an *extreme edge* of G if one of its ends is an extreme vertex of G.

Consider the graph *G* given in Figure 1.1 with $A = \{v_4, v_5\}$ and $B = \{v_1, v_2, v_7\}$, the paths $P : v_5, v_6, v_7$ and $Q : v_4, v_3, v_2$ are the only two A - B geodesics so that d(A, B) = 2. For the graph *G* given in Figure 1.2, the three $v_1v_6 - v_3v_4$ geodesics are $P : v_1, v_2, v_3$; $Q : v_1, v_2, v_4$; and $R : v_6, v_5, v_4$ with each of length 2 so that $d(v_1v_6, v_3v_4) = 2$. Since the vertices v_2 and v_5 lie on the $v_1v_6 - v_3v_4$ geodesics *P* and *R* respectively, $S = \{v_1v_6, v_3v_4\}$ is an edge-to-vertex geodetic basis of *G* so that $g_{ev}(G) = 2$.

In section 2 we give some general properties and obtain the upper edge-to-vertex geodetic number of some family of graphs. In section 3 we give some general results and sharp bounds for the upper edge-to-vertex geodetic number. In section 4 we present realization result on the edge-to-vertex geodetic number and upper edge-to-vertex geodetic number of a graph. The following theorems are used in sequel.

Theorem 1.1: [6] If v is an extreme vertex of a connected graph G, then every edge-to-vertex geodetic set contains at least one extreme edge that is incident with v.

Theorem 1.2: [6] Let G be a connected graph and S be a g_{ev} -set of G. Then no cut edge of G which is not an end-edge of G belongs to S.

Theorem 1.3: [7] For any connected graph G of size $q \ge 2$, $g_{ev}(G) = q$ if and only if G is a star.

Theorem 1.4: [7] For any connected graph G of size $q \ge 4$, $g_{ev}(G) = q - 1$ if and only if G is a double star.

Throughout the following G denotes a connected graph with at least three vertices.

2. THE UPPER EDGE-TO-VERTEX GEODETIC NUMBER OF A GRAPH

In this section we look closely at the concept of the upper edge-to-vertex geodetic number of a graph and obtain the upper edge-to-vertex geodetic number of some family of graphs.

Definition 2.1: An edge-to-vertex geodetic set *S* in a connected graph *G* is called a *minimal edge-to-vertex geodetic set* if no proper subset of *S* is an edge-to-vertex geodetic set of *G*. The *upper edge-to-vertex geodetic number* $g_{ev}^+(G)$ of *G* is the maximum cardinality of a minimal edge-to-vertex geodetic set of *G*.

Example 2.2: For the graph *G* given in Figure 2.1, $S = \{v_1v_2, v_4v_5\}$ is an edge-to-vertex geodetic basis of *G* so that g_{ev} (*G*) = 2. The set $S_1 = \{v_1v_2, v_3v_4, v_5v_6\}$ is an edge-to-vertex geodetic set of *G* and it is clear that no proper subset of S_1 is an edge-to-vertex geodetic set of *G*. Also it is easily verified that no four element or five element subset of edge set is a minimal edge-to-vertex geodetic set of *G*, it follows that $g_{ev}^+(G) = 3$.

Remark 2.3: Every minimum edge-to-vertex geodetic set of *G* is a minimal edge-to-vertex geodetic set of *G* and the converse is not true. For the graph *G* given in Figure 2.1, $S_1 = \{v_1v_2, v_3v_4, v_5v_6\}$ is a minimal edge-to-vertex geodetic set but not a minimum edge-to-vertex geodetic set of *G*.

Theorem 2.4: Let G be a connected graph with cut-vertices and S an edge-to-vertex geodetic set of G. Then every branch of G contains an element of S.

Proof: Assume that there is a branch *B* of *G* at a cut-vertex *v* such that *B* contains no element of *S*. Then by Theorem 1.1, *B* does not contain any end-edge of *G*. Hence it follows that no vertex of *B* is an end vertex of *G*. Let *u* be any vertex of *B* such that $u \neq v$ (such a vertex exists since $|V(B)| \geq 2$). Then *u* is not incident with any edge of *S* and so *u* lies on a e - f geodesic *P*: $u_1, u_2, ..., u_t$, where u_1 is an end of *e* and u_t is an end of *f* with $e, f \in S$. Since *v* is a cut-vertex of *G*, the $u_1 - u$ and $u - u_t$ subpaths of *P* both contain *v* and so *P* is not a path, which is a contradiction. Hence every branch of *G* contains an element of *S*.

Corollary 2.5: Let G be a connected graph with cut-edges and S an edge-to-vertex geodetic set of G. Then for any cutedge e of G, which is not an end-edge, each of the two components of G - e contains an element of S.

Proof: Let e = uv. Let G_1 and G_2 be the two components of G - e such that $u \in V(G_1)$ and $v \in V(G_2)$. Since u and v are cut-vertices of G, it follows that G_1 contains at least one branch at u and G_2 contains at least one branch at v. Hence it follows from Theorem 2.4 that each of G_1 and G_2 contains an element of S.

Theorem 2.6: Let G be a connected graph and S be a minimal edge - to -vertex geodetic set of G. Then no cut edge of G which is not an end-edge of G belongs to S.

Proof: Let *S* be any minimal edge-to-vertex geodetic set of *G*. Suppose that e = uv be a cut edge of *G* which is not an end-edge of *G* such that $e \in S$. Let G_1 and G_2 be the two components of G - e. Let $S' = S - \{uv\}$. We claim that *S'* is an edge-to-vertex geodetic set of *G*. By Corollary 2.5, G_1 contains an edge *xy* and G_2 contains an edge *x'y'*, where *xy*, *x* '*y'* $\in S$. Let *z* be any vertex of *G*. Assume without loss of generality that *z* belongs to G_1 . Since *uv* is a cut edge of *G*, every path (in particular every geodesic) joining a vertex of G_1 with a vertex of G_2 contains the edge *uv*. Suppose that *z* is incident with *uv* or the edge *xy* of *S* or that lies on a geodesic joining *xy* and *uv*. If *z* is incident with *uv*, then z = u. Let $P : y, y_1, y_2, ..., z = u$ be a xy - u geodesic. Let $Q : v, v_1, v_2, ..., y'$ be a v - x'y' geodesic. Then, it is clear that $P \cup \{uv\}$ $\cup Q$ is a xy - x' y' geodesic. Thus *z* lies on the xy - x'y' geodesic. If *z* is incident with *xy*, then there is nothing to prove. If *z* lies on a xy - uv geodesic say $y, y_1, y_2, ..., z, ..., u$, then let $v, v_1, v_2, ..., y'$ be v - x'y' geodesic. Then clearly $y, y_1, y_2, ..., z, ..., u, v, v_1, v_2, ..., y'$ is a xy - x'y' geodesic. Thus *z* lies on a geodesic joining *xy* and *uv* of *S* also is incident with an edge of *S'* or lies on a geodesic joining a pair of edges of *S'*. Hence it follows that *S'* is an edge-to-vertex geodetic set such that $S' \subseteq S'$, which is a contradiction to *S* is a minimal edge-to-vertex geodetic set set for *s'* or lies on a geodesic joining a pair of edges of *S'*. Hence it follows that *S'* is an edge-to-vertex geodetic set such that $S' \subseteq S'$, which is a contradiction to *S* is a minimal edge-to-vertex geodetic set set of *S'*.

of G. Hence the theorem follows.

In the following we determine the upper edge-to-vertex geodetic number of some standard graphs.

Theorem 2.7: For any non-trivial tree *T* with *k* end-edges, $g_{ev}^{+}(T) = k$.

Proof: By Theorem 1.1, any edge-to-vertex geodetic set contains all the end-edges of *T*. By Theorem 2.6, no cut-edge of *T* belongs to any minimal edge-to-vertex geodetic set of *G*. Hence it follows that the set of all end-edges of *T* is the unique minimal edge-to-vertex geodetic set of *T* so that $g_{ev}^+(T) = k$. Thus the proof is complete.

Theorem 2.8: For a complete graph $G = K_p(p \ge 4)$, $g_{ev}^+(G) = p - 1$.

Proof: Let *S* be any set of p-1 adjacent edges of K_p incident at a vertex, say *v*. Since each vertex of K_p is incident with an edge of *S*, it follows that *S* is an edge-to-vertex geodetic set of *G*. If *S* is not a minimal edge-to-vertex geodetic set of *G*, then there exists a proper subset *S*' of *S* such that *S*' an edge-to-vertex geodetic set of *G*. Therefore there exists at least one vertex, say *u* of K_p such that *u* is not incident with any edge of *S*'. Hence *u* is neither incident with any edge of *S* ' nor lies on a geodesic joining a pair of edges of *S* ' and so *S* ' is not an edge-to-vertex geodetic set of *G*, which is a contradiction. Hence *S* is a minimal edge-to-vertex geodetic set of *G*. Therefore $g_{ev}^+(G) \ge p - 1$. Suppose that there exists a minimal edge-to-vertex geodetic set *M* such that $|M| \ge p$. Since *M* contains at least *p* edges, $\langle M \rangle$ contains at least one cycle. Let $M' = M - \{e\}$, where *e* is an edge of a cycle which lies in $\langle M \rangle = p - 1$.

Theorem 2.9: For the complete bipartite graph $G = K_{m,n}(2 \le m \le n)$, $g_{ev}^+(G) = n + m - 2$.

Proof: Let $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_n\}$ be a bipartition of *G*. Let $S_i = \{x_iy_1, x_iy_2, ..., x_iy_{n-1}, x_1y_n, x_2y_n, ..., x_{i-1}y_n, x_{i+1}y_n, ..., x_my_n\}$ $(1 \le i \le m), M_j = \{x_1y_j, x_2y_j, ..., x_{m-1}y_j, x_my_1, x_my_2, ..., x_my_{j-1}, x_my_{j+1}, ..., x_my_n\}$ $(1 \le j \le n)$ and $N_k = \{x_1y_1, x_2y_2, ..., x_{m-1}y_{m-1}, x_my_m, x_my_{m+1}, ..., x_my_n\}$ with $|S_i| = |M_j| = n + m - 2$ and $|N_k| = n$. It is easily verified that any minimal edge-to-vertex geodetic set of *G* is of the form either S_i or M_j or N_k . Since no proper subset of S_i $(1 \le i \le m), M_j(1 \le j \le n)$ and N_k is an edge-to-vertex geodetic set of *G*, it follows that, $g_{ev}^{+}(G) = n + m - 2$.

3. THE EDGE-TO-VERTEX GEODETIC NUMBER AND UPPER EDGE-TO-VERTEX GEODETIC NUMBER OF A GRAPH

In this section, connected graphs G of size q with upper edge-to-vertex geodetic number q or q-1 are characterized.

Theorem 3.1: For a connected graph G, $2 \le g_{ev}(G) \le g_{ev}^+(G) \le q$.

Proof: Any edge-to-vertex geodetic set needs at least two edges and so $g_{ev}(G) \ge 2$. Since every minimal edge-to-vertex geodetic set is an edge-to-vertex geodetic set, $g_{ev}(G) \le g_{ev}^+(G)$. Also, since E(G) is an edge-to-vertex geodetic set of G, it is clear that $g_{ev}^+(G) \le q_e$. Thus $2 \le g_{ev}(G) \le g_{ev}^+(G) \le q_e$.

Remark 3.2: The bounds in Theorem 3.1 are sharp. For any non-trivial path *P*, $g_{ev}(P) = 2$. For any tree *T*, $g_{ev}(T) = g_{ev}^{+}(T)$ and $g_{ev}^{+}(K_{1,q}) = q$ for $q \ge 2$. Also, all the inequalities in the theorem are strict. For the complete graph $G = K_5$, $g_{ev}(G) = 3$, $g_{ev}^{+}(G) = 4$ and q = 10 so that $2 < g_{ev}(G) < g_{ev}^{+}(G) < q$.

Theorem 3.3: For a connected graph G, $g_{ev}(G) = q$ if and only if $g_{ev}^+(G) = q$.

Proof: Let $g_{ev}^+(G) = q$. Then S = E(G) is the unique minimal edge-to-vertex geodetic set of *G*. Since no proper subset of *S* is an edge-to-vertex geodetic set, it is clear that *S* is the unique minimum edge-to-vertex geodetic set of *G* and so $g_{ev}(G) = q$. The converse follows from Theorem 3.1.

As a consequence of this result, we have the following corollary.

Corollary 3.4: For a connected graph *G* of size *q*, the following are equivalent:

(i) $g_{ev}(G) = q$ (ii) $g_{ev}^{+}(G) = q$ (iii) $G = K_{1,q}$

Proof: This follows from Theorems 1.3 and 3.3.

Theorem 3.5: Let G be a connected graph of size $q \ge 4$ which is not a star and has no cut edge. Then $g_{ev}^{+}(G) \le q-2$.

Proof: Suppose that $g_{ev}^+(G) \ge q-1$. Then by Corollary 3.4, $g_{ev}^+(G) = q-1$. Let *e* be an edge of *G* which is not an end edge of *G* and let $M = E(G) - \{e\}$ be a minimal edge-to-vertex geodetic set of *G*. Since *e* is not a cut edge of *G*, <E(G) - e> is connected. Let *f* be an edge of <E(G) - e> which is independent of *e* and also which is not an end edge of *G*. Then $M_1 = M - \{f\}$ is an edge-to-vertex geodetic set of *G*. Since $M_1 \subseteq M$, *M* is not a minimal edge-to-vertex geodetic set of *G*. Since $m_1 \subseteq M$, *M* is not a minimal edge-to-vertex geodetic set of *G*.

set of *G*, which is a contradiction. Therefore $g_{ev}^{+}(G) \le q - 2$.

Remark 3.6: The bound in Theorem 3.5 is sharp. For the graph *G* given in Figure 3.1, $S_1 = \{v_1v_2, v_4v_5\}$, $S_2 = \{v_1v_2, v_3v_4, v_3v_5\}$, $S_3 = \{v_1v_3, v_2v_3, v_4v_5\}$ and $S_4 = \{v_1v_3, v_2v_3, v_3v_4, v_3v_5\}$ are the only four minimal edge-to-vertex geodetic set of *G* so that $g_{ev}^{+}(G) = 4 = q - 2$.

Figure: 3.1

Theorem 3.7: For a connected graph G of size $q \ge 4$, $g_{ev}(G) = q - 1$ if and only if $g_{ev}^+(G) = q - 1$.

Proof: Let $g_{ev}(G) = q - 1$. Then it follows from Theorem 3.1 that $g_{ev}^+(G) = q$ or q - 1. If $g_{ev}^+(G) = q$, then by Theorem 3.3, $g_{ev}(G) = q$, which is a contradiction. Hence $g_{ev}^+(G) = q - 1$. Conversely, let $g_{ev}^+(G) = q - 1$, then it follows from Corollary 3.4 that *G* is not a star. Hence by Theorem 3.5, *G* contains a cut edge, say *e*. Since $g_{ev}^+(G) = q - 1$, hence it follows from Theorem 2.4 that $M = E(G) - \{e\}$ is the unique minimal edge-to-vertex geodetic set of *G*. We claim that $g_{ev}(G) = q - 1$. Suppose that $g_{ev}(G) < q - 1$. Then there exists a minimum edge-to-vertex geodetic set M_1 such that $|M_1| < q-1$. By Theorem 1.2, $e \notin M_1$. Then it follows that $M_1 \subset M$, which is a contradiction. Therefore $g_{ev}(G) = q - 1$.

Corollary 3.8: For a connected graph *G* of size $q \ge 4$, the following are equivalent:

(i) $g_{ev}(G) = q - 1$

(ii) $g_{ev}^+(G) = q - 1$

(iii) G is a double star.

Proof: This follows from Theorems 1.4 and 3.7.

4. REALIZATION RESULT

In view of Theorem 3.1, we have the following realization result.

Theorem 4.1: For every two positive integers *a* and *b*, where $2 \le a \le b$, there exists a connected graph *G* with $g_{ev}(G) = a$ and $g_{ev}^+(G) = b$.

Proof: If a = b, let $G = K_{1}, a$. Then by Corollary 3.4, $g_{ev}(G) = g_{ev}^{+}(G) = a$. So, let $2 \le a < b$. Let P : x, y be a path on two vertices. Let G be the graph in Figure 4.1 obtained from P by adding new vertices $z, v_1, v_2, ..., v_{b\cdot a+1}, u_1, u_2, ..., u_{a\cdot 1}$ and joining each vertex $u_i(1 \le i \le a - 1)$ and each vertex v_i $(1 \le i \le b - a + 1)$ with z, each vertex v_i $(2 \le i \le b - a + 1)$ with x and v_1 with y. Let $S = \{zu_1, zu_2, ..., zu_{a\cdot 1}\}$ be the set of end edges of G. By Theorem 1.1, S is contained in every edge-to-vertex geodetic set of G. It is clear that S is not an edge-to-vertex geodetic set of G and so $g_{ev}(G) \ge a$. However $S' = S \cup \{xy\}$ is an edge-to-vertex geodetic set of G so that $g_{ev}(G) = a$.

Now, $T = S \cup \{yv_1, xv_2, ..., xv_{b-a+1}\}$ is an edge-to-vertex geodetic set of G. We show that T is a minimal edge-to-vertex geodetic set of G. Let W be any proper subset of T. Then there exists at least one edge say $e \in T$ such that $e \notin W$. First assume that $e = zu_i$ for some $i(1 \le i \le a - 1)$. Then the vertex u_i is neither incident with an edge of W nor lies on any geodesic joining a pair of edges of W and so W is not an edge-to-vertex geodetic set of G. Now, assume that $e = xv_i$ for some $j(2 \le j \le b - a + 1)$. Then the vertex v_i is neither incident with an edge of W nor lies on a geodesic joining any pair of edges of W and so W is not an edge-to-vertex geodetic set of G. Next, assume that $e = yv_1$. Then the vertex v_1 is neither incident with an edge of W nor lies on a geodesic joining any pair of edges of W and so W is not an edge-tovertex geodetic set of G. Hence T is a minimal edge-to-vertex geodetic set of G so that $g_{ev}^+(G) \ge b$. Now, we show that there is no minimal edge-to-vertex geodetic set X of G with $|X| \ge b + 1$. Suppose that there exists a minimal edge-tovertex geodetic set X of G such that $|X| \ge b + 1$. Then by Theorem 1.1, $S \subseteq X$. Since S' is an edge-to-vertex geodetic set of G, it follows that $xy \notin X$. Let $M_1 = \{yv_1, xv_2, xv_3..., xv_{b-a+1}\}$ and $M_2 = \{zv_1, zv_2, zv_3..., zv_{b-a+1}\}$. Let $X = S \cup S_1 \cup S_2$, where $S_1 \subseteq M_1$ and $S_2 \subseteq M_2$. First we show that $S_1 \subseteq M_1$ and $S_2 \subseteq M_2$. Suppose that $S_1 = M_1$. Then $T \subseteq X$ and so X is not a minimal edge-to-vertex geodetic set of G, which is a contradiction. Suppose that $S_2 = M_2$. If $yv_1 \notin X$, then y is neither incident with an edge of X nor lies on a geodesic joining any pair of edges of X and so X is not an edge-to-vertex geodetic set of G, which is a contradiction. If $yv_i \in X$ and if xv_i do not belong to S_1 for all $i(2 \le i \le b - a + 1)$, then x is neither incident with an edge of X nor lies on a geodesic joining any pair of edges of X and so X is not an edge-tovertex geodetic set of G, which is a contradiction. Therefore xv_i belong to S_1 for some $i(2 \le i \le b - a + 1)$. Without loss of generality let us assume that $xv_2 \in S_1$. Then $X' = X \{ zv_2 \}$ is an edge-to-vertex geodetic set of G with $X' \subseteq X$, which

is a contradiction. Therefore, $S_1 \subseteq M_1$ and $S_2 \subseteq M_2$. Next we show that $V (\langle S_1 \rangle) \cap V (\langle S_2 \rangle)$ contains no $v_i (1 \le i \le b - a + 1)$. Suppose that $V (\langle S_1 \rangle) \cap V (\langle S_2 \rangle)$ contains v_i for some $i(1 \le i \le b - a + 1)$. Without loss of generality let us assume that $v_2 \in V (\langle S_1 \rangle) \cap V (\langle S_2 \rangle)$. Then $X' = X - \{zv_2\}$ is an edge-to-vertex geodetic set of G with $X' \subset X$, which is a contradiction. Therefore $|S_1 \cup S_2| = b - a + 1$. Hence it follows that |X| = a - 1 + b - a + 1 = b, which is a contradiction to $|X| \ge b + 1$.

Therefore $g_{ev}^+(G) = b$.

Figure: 4.1

REFERENCES

- [1] F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
- [2] F. Buckley, F. Harary and L.V. Quintas, *Extremal results on the Geodetic Number of a graph*, Scientia A2 (1988) 17–22.
- [3] G. Chartrand, F. Harary and P. Zhang, *Geodetic sets in Graphs*, Discussiones Mathematicae Graph Theory 20(2000)129 138.
- [4] G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a Graph, Networks Vol. 39(1), (2002) 1 6.
- [5] F. Harary, Graph Theory, Addision-Wesley (1969).
- [6] A.P. Santhakumaran and J. John, *The Edge-to-Vertex Geodetic Number of a Graph*, Serdica Journal of Mathematics (In press).
- [7] A.P. Santhakumaran and J. John, *On the Edge-to-Vertex Geodetic Number of a Graph*, Miskolc Mathematical Notes (In press).
